Table of Contents
一、Kubernetes网络模型
在Kubernetes网络中存在两种IP(Pod IP和Service Cluster IP),Pod IP 地址是实际存在于某个网卡(可以是虚拟设备)上的,Service Cluster IP它是一个虚拟IP,是由kube-proxy使用Iptables规则重新定向到其本地端口,再均衡到后端Pod的。下面讲讲Kubernetes Pod网络设计模型:
1、基本原则:
每个Pod都拥有一个独立的IP地址(IPper Pod),而且假定所有的pod都在一个可以直接连通的、扁平的网络空间中。
2、设计原因:
用户不需要额外考虑如何建立Pod之间的连接,也不需要考虑将容器端口映射到主机端口等问题。
3、网络要求:
所有的容器都可以在不用NAT的方式下同别的容器通讯;所有节点都可在不用NAT的方式下同所有容器通讯;容器的地址和别人看到的地址是同一个地址。
二、Docker网络基础
- Linux网络名词解释:
1、网络的命名空间:Linux在网络栈中引入网络命名空间,将独立的网络协议栈隔离到不同的命令空间中,彼此间无法通信;docker利用这一特性,实现不容器间的网络隔离。
2、Veth设备对:Veth设备对的引入是为了实现在不同网络命名空间的通信。
3、Iptables/Netfilter:Netfilter负责在内核中执行各种挂接的规则(过滤、修改、丢弃等),运行在内核 模式中;Iptables模式是在用户模式下运行的进程,负责协助维护内核中Netfilter的各种规则表;通过二者的配合来实现整个Linux网络协议栈中灵活的数据包处理机制。
4、网桥:网桥是一个二层网络设备,通过网桥可以将linux支持的不同的端口连接起来,并实现类似交换机那样的多对多的通信。
5、路由:Linux系统包含一个完整的路由功能,当IP层在处理数据发送或转发的时候,会使用路由表来决定发往哪里。
- Docker生态技术栈
下图展示了Docker网络在整个Docker生态技术栈中的位置:
- Docker网络实现
1、单机网络模式:Bridge 、Host、Container、None,这里具体就不赘述了。
2、多机网络模式:一类是 Docker 在 1.9 版本中引入Libnetwork项目,对跨节点网络的原生支持;一类是通过插件(plugin)方式引入的第三方实现方案,比如 Flannel,Calico 等等。
三、Kubernetes网络基础
1、容器间通信:
同一个Pod的容器共享同一个网络命名空间,它们之间的访问可以用localhost地址 + 容器端口就可以访问。
2、同一Node中Pod间通信:
同一Node中Pod的默认路由都是docker0的地址,由于它们关联在同一个docker0网桥上,地址网段相同,所有它们之间应当是能直接通信的。
3、不同Node中Pod间通信:
不同Node中Pod间通信要满足2个条件: Pod的IP不能冲突; 将Pod的IP和所在的Node的IP关联起来,通过这个关联让Pod可以互相访问。
4、Service介绍:
Service是一组Pod的服务抽象,相当于一组Pod的LB,负责将请求分发给对应的
Pod;Service会为这个LB提供一个IP,一般称为ClusterIP。
5、Kube-proxy介绍:
Kube-proxy是一个简单的网络代理和负载均衡器,它的作用主要是负责Service的实现,具体来说,就是实现了内部从Pod到Service和外部的从NodePort向Service的访问。
实现方式:
- userspace是在用户空间,通过kuber-proxy实现LB的代理服务,这个是kube-proxy的最初的版本,较为稳定,但是效率也自然不太高。
- iptables是纯采用iptables来实现LB,是目前kube-proxy默认的方式。
下面是iptables模式下Kube-proxy的实现方式:
- 在这种模式下,kube-proxy监视Kubernetes主服务器添加和删除服务和端点对象。对于每个服务,它安装iptables规则,捕获到服务的clusterIP(虚拟)和端口的流量,并将流量重定向到服务的后端集合之一。对于每个Endpoints对象,它安装选择后端Pod的iptables规则。
- 默认情况下,后端的选择是随机的。可以通过将service.spec.sessionAffinity设置为“ClientIP”(默认为“无”)来选择基于客户端IP的会话关联。
- 与用户空间代理一样,最终结果是绑定到服务的IP:端口的任何流量被代理到适当的后端,而客户端不知道关于Kubernetes或服务或Pod的任何信息。这应该比用户空间代理更快,更可靠。然而,与用户空间代理不同,如果最初选择的Pod不响应,则iptables代理不能自动重试另一个Pod,因此它取决于具有工作准备就绪探测。
6、Kube-dns介绍
Kube-dns用来为kubernetes service分配子域名,在集群中可以通过名称访问service;通常kube-dns会为service赋予一个名为“service名称.namespace.svc.cluster.local”的A记录,用来解析service的clusterip。
Kube-dns组件:
- 在Kubernetes v1.4版本之前由“Kube2sky、Etcd、Skydns、Exechealthz”四个组件组成。
- 在Kubernetes v1.4版本及之后由“Kubedns、dnsmasq、exechealthz”三个组件组成。
Kubedns
- 接入SkyDNS,为dnsmasq提供查询服务。
- 替换etcd容器,使用树形结构在内存中保存DNS记录。
- 通过K8S API监视Service资源变化并更新DNS记录。
- 服务10053端口。
Dnsmasq
- Dnsmasq是一款小巧的DNS配置工具。
- 在kube-dns插件中的作用是:
- 通过kubedns容器获取DNS规则,在集群中提供DNS查询服务
- 提供DNS缓存,提高查询性能
- 降低kubedns容器的压力、提高稳定性
- Dockerfile在GitHub上Kubernetes组织的contrib仓库中,位于dnsmasq目录下。
- 在kube-dns插件的编排文件中可以看到,dnsmasq通过参数–server=127.0.0.1:10053指定upstream为kubedns。
Exechealthz
- 在kube-dns插件中提供健康检查功能。
- 源码同样在contrib仓库中,位于exec-healthz目录下。
- 新版中会对两个容器都进行健康检查,更加完善。
四、Kubernetes网络开源组件
1、技术术语:
IPAM:IP地址管理;这个IP地址管理并不是容器所特有的,传统的网络比如说DHCP其实也是一种IPAM,到了容器时代我们谈IPAM,主流的两种方法: 基于CIDR的IP地址段分配地或者精确为每一个容器分配IP。但总之一旦形成一个容器主机集群之后,上面的容器都要给它分配一个全局唯一的IP地址,这就涉及到IPAM的话题。
Overlay:在现有二层或三层网络之上再构建起来一个独立的网络,这个网络通常会有自己独立的IP地址空间、交换或者路由的实现。
IPSesc:一个点对点的一个加密通信协议,一般会用到Overlay网络的数据通道里。
vxLAN:由VMware、Cisco、RedHat等联合提出的这么一个解决方案,这个解决方案最主要是解决VLAN支持虚拟网络数量(4096)过少的问题。因为在公有云上每一个租户都有不同的VPC,4096明显不够用。就有了vxLAN,它可以支持1600万个虚拟网络,基本上公有云是够用的。
网桥Bridge: 连接两个对等网络之间的网络设备,但在今天的语境里指的是Linux Bridge,就是大名鼎鼎的Docker0这个网桥。
BGP: 主干网自治网络的路由协议,今天有了互联网,互联网由很多小的自治网络构成的,自治网络之间的三层路由是由BGP实现的。
SDN、Openflow: 软件定义网络里面的一个术语,比如说我们经常听到的流表、控制平面,或者转发平面都是Openflow里的术语。
2、容器网络方案:
隧道方案( Overlay Networking )
隧道方案在IaaS层的网络中应用也比较多,大家共识是随着节点规模的增长复杂度会提升,而且出了网络问题跟踪起来比较麻烦,大规模集群情况下这是需要考虑的一个点。
- Weave:UDP广播,本机建立新的BR,通过PCAP互通
- Open vSwitch(OVS):基于VxLan和GRE协议,但是性能方面损失比较严重
- Flannel:UDP广播,VxLan
- Racher:IPsec
路由方案
路由方案一般是从3层或者2层实现隔离和跨主机容器互通的,出了问题也很容易排查。
- Calico:基于BGP协议的路由方案,支持很细致的ACL控制,对混合云亲和度比较高。
- Macvlan:从逻辑和Kernel层来看隔离性和性能最优的方案,基于二层隔离,所以需要二层路由器支持,大多数云服务商不支持,所以混合云上比较难以实现。
3、CNM & CNI阵营:
容器网络发展到现在,形成了两大阵营,就是Docker的CNM和Google、CoreOS、Kuberenetes主导的CNI。首先明确一点,CNM和CNI并不是网络实现,他们是网络规范和网络体系,从研发的角度他们就是一堆接口,你底层是用Flannel也好、用Calico也好,他们并不关心,CNM和CNI关心的是网络管理的问题。
CNM(Docker LibnetworkContainer Network Model):
Docker Libnetwork的优势就是原生,而且和Docker容器生命周期结合紧密;缺点也可以理解为是原生,被Docker“绑架”。
- Docker Swarm overlay
- Macvlan & IP networkdrivers
- Calico
- Contiv
- Weave
CNI(Container NetworkInterface):
CNI的优势是兼容其他容器技术(e.g. rkt)及上层编排系统(Kubernetes & Mesos),而且社区活跃势头迅猛,Kubernetes加上CoreOS主推;缺点是非Docker原生。
- Kubernetes
- Weave
- Macvlan
- Calico
- Flannel
- Contiv
- Mesos CNI
4、Flannel容器网络:
Flannel之所以可以搭建kubernets依赖的底层网络,是因为它可以实现以下两点:
- 它给每个node上的docker容器分配相互不想冲突的IP地址;
- 它能给这些IP地址之间建立一个覆盖网络,同过覆盖网络,将数据包原封不动的传递到目标容器内。
Flannel介绍
- Flannel是CoreOS团队针对Kubernetes设计的一个网络规划服务,简单来说,它的功能是让集群中的不同节点主机创建的Docker容器都具有全集群唯一的虚拟IP地址。
- 在默认的Docker配置中,每个节点上的Docker服务会分别负责所在节点容器的IP分配。这样导致的一个问题是,不同节点上容器可能获得相同的内外IP地址。并使这些容器之间能够之间通过IP地址相互找到,也就是相互ping通。
- Flannel的设计目的就是为集群中的所有节点重新规划IP地址的使用规则,从而使得不同节点上的容器能够获得“同属一个内网”且”不重复的”IP地址,并让属于不同节点上的容器能够直接通过内网IP通信。
- Flannel实质上是一种“覆盖网络(overlaynetwork)”,也就是将TCP数据包装在另一种网络包里面进行路由转发和通信,目前已经支持udp、vxlan、host-gw、aws-vpc、gce和alloc路由等数据转发方式,默认的节点间数据通信方式是UDP转发。
5、Calico容器网络:
Calico介绍
- Calico是一个纯3层的数据中心网络方案,而且无缝集成像OpenStack这种IaaS云架构,能够提供可控的VM、容器、裸机之间的IP通信。Calico不使用重叠网络比如flannel和libnetwork重叠网络驱动,它是一个纯三层的方法,使用虚拟路由代替虚拟交换,每一台虚拟路由通过BGP协议传播可达信息(路由)到剩余数据中心。
- Calico在每一个计算节点利用Linux Kernel实现了一个高效的vRouter来负责数据转发,而每个vRouter通过BGP协议负责把自己上运行的workload的路由信息像整个Calico网络内传播——小规模部署可以直接互联,大规模下可通过指定的BGP route reflector来完成。
- Calico节点组网可以直接利用数据中心的网络结构(无论是L2或者L3),不需要额外的NAT,隧道或者Overlay Network。
- Calico基于iptables还提供了丰富而灵活的网络Policy,保证通过各个节点上的ACLs来提供Workload的多租户隔离、安全组以及其他可达性限制等功能。
Calico架构图
五、网络开源组件性能对比分析
性能对比分析:
性能对比总结:
CalicoBGP 方案最好,不能用 BGP 也可以考虑 Calico ipip tunnel 方案;如果是 Coreos 系又能开 udp offload,flannel 是不错的选择;Docker 原生Overlay还有很多需要改进的地方。
最后,再提下我们有容云5.22发布了基于Kubernetes的容器云平台产品UFleet,UFleet采用的是Flannel网络,后续我们将支持Calico网络,如需试用,欢迎联系有容云。
评论前必须登录!
注册